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The response of simply supported circular cylindrical shells to harmonic excitation in the
spectral neighbourhood of one of the lowest natural frequencies is investigated by using
improved mode expansions with respect to those assumed in Parts I and II of the present
study. Two cases are studied: (1) shells in vacuo; and (2) shells "lled with stagnant water. The
improved expansions allow checking the accuracy of the solutions previously obtained and
giving de"nitive results within the limits of Donnell's non-linear shallow-shell theory.
The improved mode expansions include: (1) harmonics of the circumferential mode number
n under consideration, and (2) only the principal n, but with harmonics of the longitudinal
mode included. The e!ect of additional longitudinal modes is absolutely insigni"cant in both
the driven and companion mode responses. The e!ect of modes with 2n circumferential
waves is very limited on the trend of non-linearity, but is signi"cant in the response with
companion mode participation in the case of lightly damped shells (empty shells). In
particular, the travelling wave response appears for much lower vibration amplitudes and
presents a frequency range without stable responses, corresponding to a beating
phenomenon. A liquid (water) contained in the shell generates a much stronger softening
behaviour of the system. Experiments with a water-"lled circular cylindrical shell made of
steel are in very good agreement with the present theory.

( 2000 Academic Press
1. INTRODUCTION

The response of simply supported circular cylindrical shells to a harmonic excitation in the
spectral neighbourhood of one of the lowest natural frequencies is investigated by using
improved mode expansions with respect to those assumed in Parts I and II [1, 2] of the
present study. Two cases are studied: (1) shells in vacuo; (2) shells "lled with stagnant water.
The improved expansions allow checking the accuracy of the solutions previously obtained
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and giving de"nitive results within the limits of Donnell's non-linear shallow-shell
theory [3].

The harmonic excitation is assumed to be in the neighbourhood of the mode (n, m)
of the shell having prevalent radial displacement, where n is the number of circumferential
waves and m is the number of axial half-waves. In particular, the case m"1, n'0
(asymmetric mode) without #uid #ow is considered in this paper. The improved mode
expansions include either: (1) harmonics of the circumferential mode number n under
consideration, or (2) only the principal n, but with harmonics of the longitudinal mode
included.

Results con"rm the supposition made in Part II of the present study [2], i.e., that
additional terms in the mode expansion do not have the same fundamental e!ect
on the trend of non-linearity as the "rst and third axisymmetric modes. The e!ect of
additional longitudinal modes is absolutely insigni"cant in both the driven and companion
mode responses. The e!ect of modes with harmonics of the circumferential mode number
n under consideration is limited on the trend of non-linearity but is signi"cant in the
response with companion mode participation for lightly damped shells (empty shells). In
particular, the travelling wave response appears for much lower vibration amplitudes and
presents a frequency range without stable responses, corresponding to a beating
phenomenon.

A complete review of studies on large-amplitude vibrations of circular cylindrical shells is
given by Amabili et al. [4, 5]. In particular, two of these previous studies used modal
expansions of radial displacement including modes with 2n circumferential waves to study
the non-linear shell response: Ginsberg [6] and Chen and Babcock [7]. However, they
condensed the model to a two degree-of-freedom (d.o.f.) one by using a perturbation
approach with some kind of truncation error. No studies showing the e!ect of truncation of
mode expansion in the non-linear shell response are available.

Experiments with a water-"lled circular cylindrical shell made of steel have given results
in very good agreement with the present theory. Experimental data for shell response larger
than the shell thickness are rare in literature.

2. ADDITIONAL TERMS IN THE MODE EXPANSION

Similar to Parts I and II [1, 2] of the present study, attention is focused on both a "nite,
simply supported, closed circular cylindrical shell of length ¸, and an in"nitely long shell,
periodically supported. A cylindrical co-ordinate system (O; x, r, h) is chosen, with the origin
O placed at the centre of one end of the shell. The displacements of points in the middle
surface of the shell are denoted by u, v and w, in the axial, circumferential and radial
directions respectively. Using Donnell's non-linear shallow-shell theory, the equation of
motion for large-amplitude transverse vibrations of a very thin, circular cylindrical shell is
given by [1, 3]

D+ 4w#chwR #ohwK"f!p#
1

R

L2F
Lx2

#A
L2F

R2Lh2

L2w
Lx2

!2
L2F

R Lx Lh
L2w

R Lx Lh
#

L2F
Lx2

L2w

R2Lh2B,
(1)

where D"Eh3/[12(1!l2)] is the #exural rigidity, E is Young's modulus, l the Poisson
ratio, h the shell thickness, R the mean shell radius, o the mass density of the shell,
c (kg/m3/s) the damping coe$cient, and f and p are the radial pressures applied to the
surface of the shell as a consequence of external forces and the contained #owing #uid
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respectively. The radial de#ection w is positive inward, wR "(Lw/Lt), w( "(L2w/Lt2); F is the
in-plane stress function, given by [1, 3]

1

Eh
+ 4F"!

1

R

L2w
Lx2

#CA
L2w

R LxLhB
2
!

L2w
Lx2

L2w

R2Lh2D . (2)

In equations (1) and (2) the biharmonic operator is de"ned as +4"[L2/Lx2#L2/(R2Lh2)]2.
In Parts I and II of the present study [1, 2] the following mode expansion of the #exural
deformation w has been used:

w (x, h, t)"
2
+

m/1

[A
m,n

(t) cos (nh)#B
m,n

(t) sin (nh)] sin (j
m
x)#

3
+

m/1

A
(2m~1),0

(t) sin (j
(2m~1)

x),

(3)

where j
m
"mn/¸, A

m,n
(t), B

m,n
(t) and A

m,0
(t) are unknown functions of time t.

Equation (3) was obtained by neglecting the interaction between the asymmetric mode
considered and other asymmetric modes of di!erent n. Moreover, the interaction
among asymmetric modes with di!erent numbers of longitudinal half-waves is stopped at
m"2; in particular, it was observed [2] that without #uid #ow there is no interaction
between modes (n, 1) and (n, 2). The role of axisymmetric modes in non-linear vibrations of
the shell was deeply studied in Part II of the present study [2]; axisymmetric modes
with m even can be eliminated in the expansion, because they do not contribute to
shell contraction. It was shown [2], however, that it is necessary to retain the "rst and
third axisymmetric modes, i.e. (0, 1) and (0, 3), and that it is possible to neglect other
axisymmetric modes in the study of the harmonic response of mode (n, 1) of a shell without
#ow. In order to have more complete results on the accuracy of the mode expansion used in
the present study, it was considered useful to investigate (1) the interaction among
asymmetric modes with di!erent n and (2) the interaction among asymmetric modes of the
same n but di!erent m.

The harmonic response without #ow is considered here; the driven (directly excited)
mode considered has one longitudinal half-wave: m"1, for any n. From the structure
of the equations, where quadratic and cubic non-linearities appear, and for symmetry
reasons (rotating the system by 2n/n is expected to give the same system con"guration)
the interaction among asymmetric modes of di!erent n will be possible only
with modes having kn circumferential waves, where k is an integer. Here k"1, 2 is
considered to evaluate the truncation e!ect in the series expansion. Analogously,
for symmetry reasons, the interaction among asymmetric modes with di!erent numbers of
longitudinal half-waves involves only odd values of m [2]; in particular, m"1, 3 is
considered.

The e!ect on the dynamics of modes with 2n circumferential waves is investigated by
using the following mode expansion:

w (x, h, t)"
2
+
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x). (4)
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A di!erent mode expansion is used to investigate the e!ect of modes with three longitudinal
half-waves,

w (x, h, t)"
2
+

m/1

[A
m,n

(t) cos (nh)#B
m,n

(t) sin (nh)] sin (j
(2m~1)

x)

#

2
+

m/1

A
(2m~1),0

(t) sin (j
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x). (5)

Both mode expansions, in equations (4) and (5), have six modes; they allow studying
separately the two e!ects on the harmonic response. Equations (3)}(5) satisfy the boundary
conditions

w"0 and M
x
"!DM(L2w/Lx2)#l [L2w/(R2 Lh2)]N"0 at x"0, ¸, (6)

where M
x
is the bending moment per unit length. The other boundary conditions di!er for

the simply supported shell of "nite length (Case 1) and for the in"nitely long, periodically
supported shell with restrained axial displacement at the supports (Case 2). They are as
follows:

Case 1: N
x
"0 at x"0, ¸ and v"0 at x"0, ¸, (7a)

Case 2: u"0 at x"0, ¸ and v"0 at x"0, ¸; (7b)

moreover, u, v and w must be continuous in h. Case 1 corresponds to the classical simply
supported shell and Case 2 to a shell with extensions thereof outside (0, ¸), as discussed in
reference [1].

Modes with a number of axial half-waves larger than one can be studied by using a mode
expansion retaining axisymmetric terms with m!2, m and m#2 axial half-waves for an
odd value of m (for an even value of m, the axisymmetric terms are: m!1, m#1 and m#3);
the truncation e!ect could be checked also in this case as done for m "1.

3. GALERKIN SOLUTION

The solution of the problem is obtained by a Galerkin projection of the equation of
motion (1) when the homogeneous F

h
and the particular F

p
solutions of the stress function

F"F
h
#F

p
are found. The following two sections present the solution for the two di!erent

mode expansions given in equations (4) and (5).

3.1. MODE EXPANSION INCLUDING MODES WITH 2n CIRCUMFERENTIAL WAVES

Substituting the expansion of w, equation (4), in the right-hand side of equation (2),
a partial di!erential equation for the stress function F is obtained. The particular solution is
given by
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where the functions c
i
, i"1,2,25, are given in Appendix A.

The expansion used for the transverse displacement w satis"es the boundary conditions
given by equations (6); moreover, it satis"es exactly the continuity of circumferential
displacement, similar to the expansion used in reference [1]. The boundary conditions for
either of the in-plane displacements, equations (7), are satis"ed &&on the average'' [1].

The homogeneous solution of equation (2) may be assumed to be of the form [1]
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"
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x2 GNM h#
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where NM
x
, NM h and NM

xh are the in-plane restraint stress resultants generated at the ends of the
shell, as a consequence of the in-plane constraints on the average. Equation (9) is not the
most general homogeneous solution, but it is chosen in order to satisfy the boundary
conditions on the average. In fact, it satis"es the forces per unit length in the axial NM

x
and

circumferential NM h directions, as well as the shear force NM
xh , on the average [1] as

a consequence of (i) the contribution of F
p

to NM h being (2nR¸)~1 :L
0

:2n
0

[L2F
p
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and (ii) contributions of F
p
to NM

x
and NM

xh being zero. The boundary conditions allow us to
express the in-plane restraint stresses NM

x
, NM h and NM

xh [1] in terms of w and its derivatives.
For Case 1 they give
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while for Case 2, they give
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3.2. MODE EXPANSION INCLUDING MODES WITH THREE LONGITUDINAL HALF-WAVES

Substituting the expansion of w, equation (5), into the right-hand side of equation (2),
a partial di!erential equation for the stress function F is obtained. The particular solution is
given by
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where the functions c
i
, i"1,2,23, are given in Appendix B.

Equation (5) satis"es the boundary conditions given by equations (6); moreover, it
satis"es exactly the continuity of circumferential displacement. The boundary conditions
for either of the in-plane displacements, equations (7), are satis"ed &&on the average''.

The homogeneous solution is still given by equation (9). The stress resultants NM
x
, NM h and

NM
xh are given by
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while for Case 2, they give
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3.3. GALERKIN PROJECTION AND EQUATIONS OF MOTION

By using the Galerkin method, six second order ordinary, coupled non-linear di!erential
equations are obtained for the variables A

1,n
(t), B

1,n
(t), A

1,2n
(t) or A

3,n
(t), B

1,2n
(t) or B

3,n
(t),

A
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(t), by successively weighting the single original equation with the weighting
functions z

s
and integrating over the shell middle surface. The weighting functions z

s
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de"ned as

z
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(x, h)"G

cos (nh) sin(nx/¸) for s"1,
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sin (2nh) sin (nx/¸) or sin (nh) sin (3nx/¸) for s"4,

sin (nx/¸) for s"5,

sin (3nx/¸) for s"6.

(17)

The Galerkin projection of the equation of motion (1) has been performed by using the
Mathematica computer software [8]. The modal excitation f"f

n
cos (nh) sin (nx/¸) cos (ut) is

considered. In particular, for the mode expansion including modes with 2n circumferential
waves and axial constraint N

x
"0 at x"0, ¸, the following system of six equations is

obtained. The "rst one is
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and h
i
, i"1,2,10, are coe$cients depending on geometry, material properties and n that

arise from projections of the part of equation (1) involving the stress function F. The second
equation has the same form as equation (18a) without excitation, but with A
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replaced by
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and vice versa,
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The third equation is
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and k
i
, i"1,2,10, are appropriate coe$cients. The fourth equation is
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The "fth equation, that is related to the "rst axisymmetric d.o.f., is given by

A$
1,0

(t)#2f
1,0

u
1,0

AQ
1,0

(t)#u2
1,0

A
1,0

(t)#l
1
A

1,0
(t)A2

1,n
(t)#l

1
A

1,0
(t)B2

1,n
(t)

#l
2
A

1,0
(t)A2

1,2n
(t)#l

2
A

1,0
(t)B2

1,2n
(t)#l

3
A2

1,n
(t)#l

3
B2

1,n
(t)#l

4
A2

1,2n
(t)#l

4
B2
1,2n

(t)

#l
5
A

3,0
(t)A2

1,n
(t)#l

5
A

3,0
(t)B2

1,n
(t)#l

6
A

3,0
(t)A2

1,2n
(t)#l

6
A

3,0
(t)B2

1,2n
(t)

#l
7
A

1,2n
(t)B2

1,n
(t)!l

7
A

1,2n
(t)A2

1,n
(t)!2l

7
B
1,2n

(t)A
1,n

(t )B
1,n

(t)"0, (18e)

where

m
1,0

"ohn¸#o
F
¸2I

0
(nR/¸)/I@

0
(nR/¸),

u2
1,0

"

n¸
m

1,0
A
Dn4

¸4
#

Eh

R2B, f
1,0

"chn¸/(2u
1,0

m
1,0

),

and l
i
, i"1,2,7, are appropriate coe$cients. The sixth equation is
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4. NUMERICAL RESULTS

Numerical computations have been carried out for both empty and water-"lled shells, for
the same cases already investigated in Parts I and II [1, 2] of the present study.
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4.1. SHELL IN <AC;O

The case analyzed here was initially studied by Chen and Babcock [7] and was also
studied by Amabili et al. [2, 4]. It relates to a circular cylindrical shell in vacuum, simply
supported at the ends (with zero axial force N

x
), and having the following dimensions and

properties: ¸"0)2 m, R"0)1 m, h"0)247]10~3 m, E"71)02]109 Pa, o"2796 kg/m3

and l"0)31; the mode investigated is n"6 and m"1. The amplitude of the external
modal excitation is f

1,n
"0)0012h2ou2

1,n
, and the damping ratio f

1,n
"0)0005 (with

f
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"f
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u
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/u
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, f
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"f
1,n

u
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1,n

, f
1,0

"f
1,n

u
1,0

/u
1,n

and f
3,0

"f
1,n

u
3,0

/u
1,n

); the
linear radian frequencies are u

1,n
"2n]564)2 rad/s, u

1,2n
"2n]891)8 rad/s,

u
3,n

"2n]3080 rad/s, u
1,0

"2n]8021 rad/s, u
3,0

"2n]8023 rad/s. All the numerical
results have been obtained by using the software A;¹O [9] for bifurcation and
continuation of the solution of ordinary di!erential equations, based on a collocation
method. The periodic solutions obtained show the maximum amplitude of the generalized
co-ordinates in a period.

Figure 1 shows the frequency}response relationship of the driven mode, without
companion mode participation, when the excitation frequency is in the neighbourhood of
the linear resonance of mode (1, 6), computed by using mode expansions including driven
and companion modes, in addition to: (i) two asymmetric modes with 2n circumferential
waves plus two axisymmetric modes (thick continuous line); (ii) three axisymmetric modes
(thin continuous line); (iii) two axisymmetric modes (dashed line); and (iv) only the "rst
Figure 1. Frequency}response curves for the driven mode without companion mode participation, m"1:0, model including modes with 2n circumferential waves; **, model with three axisymmetric modes;
!!!, model with two axisymmetric modes; ) - ) - ) - ) , model with one axisymmetric mode.
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axisymmetric mode (chain-dotted line). The axisymmetric modes considered have an odd
number of longitudinal half-waves, for the reasons discussed in reference [2]. The curves
corresponding to cases (ii)}(iv) are given in Figure 2 of reference [2] and are reported here
only for comparison. The response obtained with the asymmetric modes having three
longitudinal half-waves plus two axisymmetric modes overlaps perfectly the curve of case
(iii), i.e., with two axisymmetric modes only. It means that the e!ect of additional
longitudinal modes is absolutely negligible in the single-mode response without #uid #ow.
It is very interesting to observe that the curves corresponding to cases (i) and (iii) are quite
close, i.e., the e!ect of modes with 2n circumferential waves is limited, so far as the
single-mode response of the shell is concerned.

As a consequence of the insensitivity of the response to additional asymmetric modes as
compared to computations with only the driven and the axisymmetric modes, it is
reasonably believed that further increases in the number of asymmetric modes would not
signi"cantly change the single-mode response of this shell.

Figure 2 shows the frequency}response relationship with companion mode participation
for the model including modes with 2n circumferential waves. When this "gure is compared
to Figure 3 of reference [2], it becomes evident that the response with companion mode
participation is signi"cantly a!ected by modes with 2n circumferential waves. In fact,
the companion mode response B

1,n
(t) participates over an enlarged frequency range. The

stable area in branch 2 at the tip of the response A
1,n

(t) is decreased and there is a second
peak at the right-hand end of branch 2. Moreover, the response A

1,n
(t) in branch 2 is

diminished; this means that travelling wave response develops at smaller vibration
amplitudes. Another interesting phenomenon is that no stable solutions exist for
0.9981(u/u

1,n
(0)9998 (the non-existence of stable solutions simply means that no stable

periodic solutions exist). For the same case, neglecting modes with 2n circumferential waves,
no regions without stable solutions are obtained [2]. A further complication is shown in
Figure 2(d), relating to B

1,2n
(t), where a third branch appears. Bifurcations of branch &&1'' are

of the pitchfork type; the loss of stability of branch &&2'' is due to foldings in the phase
diagrams (with respect to the excitation); these conclusions can be proved with
a perturbation analysis, as performed in reference [4].

Figure 3 shows the frequency}response relationship with companion mode participation
for the model including modes with three longitudinal half-waves. This "gure is the
same as that obtained neglecting modes with three longitudinal half-waves [2], except for
Figures 3(c, d) that show the maximum amplitude of A

3,n
(t) and B

3,n
(t). The amplitudes of

these generalized co-ordinates are at least one order of magnitude lower than that
of the "rst axisymmetric mode A

1,0
(t). No additional branches have been detected in

this case.
It has been observed in Figure 2 that no stable periodic solutions exist for

0)9981(u/u
1,n

(0)9998, for the model including modes with 2n circumferential waves.
Therefore, the response of the system to harmonic excitation has been investigated further
in this region. The PoincareH maps obtained for the six generalized co-ordinates for
u/u

1,n
"0)999 are given in Figure 4 and show a limit cycle; the PoincareH maps have been

obtained by direct integration of the equations of motion, performed by using an adaptive
step-size Runge}Kutta integration scheme; the maps are obtained by using the points
computed at the instant where the amplitude of the force is maximum. The limit cycle is an
attractive one-dimensional set embedded in a 12-D phase space in the PoincareH map. The
limit cycle shows a modulated harmonic response, as can be observed in Figure 5(a), which
shows the time response A

1,n
(t). This "gure also shows that the maximum of A

1,n
(t) in any

excitation period is approximately comprised between the two unstable branches &&1'' and
&&2'' for u/u

1,n
"0)999 (see Figure 2(a)). The response is not chaotic as can be ascertained



Figure 2. Frequency}response curve with companion mode participation for the model including modes with 2n
circumferential waves. (a) Maximum of A

1,n
(t)/h; (b) maximum of B

1,n
(t)/h; (c) maximum of A

1,2n
(t)/h; (d) maximum

of B
1,2n

(t)/h; (e) maximum of A
1,0

(t)/h; (f ) maximum of A
3,0

(t)/h. **, Stable solutions; !!!, unstable
solutions.
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from the frequency spectrum given in Figure 5(b). It shows that the single frequency
response obtained in the stable region is divided into several closely spaced frequencies that
give a beating phenomenon. The whole area where no stable solutions exist is associated
with beating phenomena that give modulations in the oscillation amplitude. Note that the
small portion of the spectrum given in Figure 5(b) contains most of the energy in the time
signal, i.e., no harmonic components are present at lower and higher frequencies.



Figure 3. Frequency}response curve with companion mode participation for the model including modes with
three longitudinal half-waves. (a) Maximum of A

1,n
(t)/h; (b) maximum of B

1,n
(t)/h; (c) maximum of A

3,n
(t)/h; (d)

maximum of B
3,n

(t)/h; (e) maximum of A
1,0

(t)/h; (f ) maximum of A
3,0

(t)/h. **, Stable solutions; !!!,
unstable solutions.
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4.2. WATER-FILLED SHELL

A case presenting a much stronger non-linearity is a water-"lled circular cylindrical shell,
simply supported at the ends (N

x
"0), with the following characteristics: ¸/R"2,

h/R"0)01, E"206]109 Pa, o"7850 kg/m3, o
F
"1000 kg/m3 and l"0)3 previously

studied in references [1, 2]. In this case, no #uid #ow is considered, the shell ends are open



Figure 4. PoincareH maps for u/u
1,n

"0)999 and f
1,n

"0)0012h2ou2
1,n

showing limit-cycle motion. (a) First
generalized co-ordinate; (b) second generalized co-ordinate; (c) third generalized co-ordinate; (d) fourth generalized
co-ordinate; (e) "fth generalized co-ordinate; (f) sixth generalized co-ordinate.
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(zero pressure at x"0, ¸) and a linear #uid structure-interaction model has been used. The
mode considered is n"5, m"1, with a damping ratio f

1,n
"0)01, a linear radian frequency

u
1,n

"2n]106)69 rad/s and an amplitude of the external modal excitation
f
1,n

"0)03hu2
1,n

m
1
[2/(n¸)]. Only the model including modes with 2n circumferential waves

is discussed here, since it has been found that additional longitudinal half-waves have
a negligible e!ect.



Figure 5. Limit cycle response; u/u
1,n

"0)999 and f
1,n

"0)0012h2ou2
1,n

. (a) Time history; (b) frequency
spectrum.
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The frequency}response relationship with companion mode participation is given in
Figure 6. From both the numerical and the qualitative points of view, the response of the
system is very close to that obtained in reference [2], where modes with 2n circumferential
waves were not considered. In particular, a slightly enhanced softening behaviour is
observed with respect to the results obtained in reference [2] and additionally branch &&3'' is
observed in the response of the generalized co-ordinate B

1,2n
(t). Therefore, it is possible to

say that, in this case, the modal interaction between the six generalized co-ordinates is
signi"cantly reduced with respect to the case in vacuo studied in the previous section. This is
attributed to the increased damping. As a consequence, the di!erence between the model
presented in references [1, 2] and the present results is negligible in the case of the
water-"lled shell studied.

5. EXPERIMENTAL RESULTS AND COMPARISON

Tests were conducted on a commercial circular cylindrical tank made of steel and having
a longitudinal seam weld. The #at, steel end-plates of the tank were mostly removed, leaving
only an annular part, 15 mm wide, to approximate the simply supported boundary
condition of the shell; rubber disks 1 mm thick were glued to these annular end-plates. The
tank was "lled with water. The open-end #uid boundary condition is well approximated by



Figure 6. Frequency-response curve with companion mode participation for the model including modes with 2n
circumferential waves; water-"lled shell. (a) Maximum of A

1,n
(t)/h; (b) maximum of B

1,n
(t)/h; (c) maximum of

A
1,2n

(t)/h; (d) maximum of B
1,2n

(t)/h; (e) maximum of A
1,0

(t)/h; (f) maximum of A
3,0

(t)/h. **, Stable solutions;
!!!, unstable solutions.
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the #exible rubber disks at the shell ends. The dimensions and material properties of the
system are: ¸"246 mm, R"86)5 mm, h"0)23 mm, E"1)9]1011 Pa, o"7850 kg/m3,
o
F
"1000 kg/m3 and l"0)3. The shell was suspended with elastic cables to a box-type

frame. A picture of the test-shell is given in Figure 7.
The shell was subjected to harmonic excitation in the spectral neighbourhood of the

lowest natural frequency, corresponding to mode n"6 and m"1, and its response was



Figure 7. Picture of the tested shell being excited by the shaker.
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investigated. The excitation was provided by an electrodynamic exciter (shaker), model
LDS V406 with power ampli"er LDS PA100E, connected to the shell by a stinger at
x"0)118 m, i.e., close to x"¸/2. A piezoelectric force transducer, model B&K 8200, of
mass 21 g, was screwed to a base of 3)5 g which was glued to the shell; the stinger was
screwed to the force transducer to measure the force transmitted. The shell response was
measured by using two accelerometers, model B&K 4393, of mass 2)4 g, glued to the shell at
x"0)096 mm, i.e., 0)39¸ (sin(nx/¸)"0)94). The "rst accelerometer was placed at the same
angular position as the stinger, to measure the driven mode (with a very small contribution
of axisymmetric and cos(2nh) terms) and the second one at the same axial location with an
angular distance of n/12, to capture the companion mode. The time responses were
measured by using a Difa Scadas II front-end connected to an HP 715/80 workstation and
the software Ideas Test for signal processing and data analysis; the same front-end was used
to generate the harmonic signal.

The fundamental frequency of the water-"lled shell was measured to be 130)9 Hz whereas
the theoretical value is 134)7 Hz. The di!erence is attributed to imperfections in the test
specimen and mainly to the added mass due to the sensors glued to the shell. Theoretical
and measured natural frequencies are reported in Table 1. The e!ect of sensors has been
TABLE 1

¹heoretical and experimental natural frequencies for the water-,lled test-shell

Mode Theoretical frequency (Hz) Experimental frequency (Hz)

n"6, m"1 (driven) 134)7 130)9
n"6, m"1 (companion) 134)7 126)2
n"5, m"1 143)2 143)6
n"7, m"1 152)9 148)3



Figure 8. Experimentally measured frequency}response curves for the water-"lled test shell.*j*, force level
1)2 N, increasing frequency; *e*, force level 1)2 N, decreasing frequency; *m*, force level 1)6 N, increasing
frequency; *s*, force level 1)6 N, decreasing frequency.
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also theoretically investigated by using the method reported in reference [10]; the frequency
of the fundamental mode is lowered by about 4 Hz and the mode shapes are slightly
distorted. Acceleration is expected to have di!erent peak values on the anti-nodes as
a consequence of distortion of mode shapes. Moreover, this asymmetry of the structure
causes a di!erence between the natural frequencies of the driven and companion modes, as
experimentally veri"ed.

Figure 8 shows the accelerations measured by the "rst accelerometer versus the frequency
ratio, i.e. excitation frequency/linear frequency of the fundamental mode, for two di!erent
force levels: 1)2 and 1)6 N. The measured acceleration was obtained as a peak value of the
sinusoidal acceleration. Experiments were performed for both increasing and decreasing
excitation frequency, and both curves are given in Figure 8; the hysteresis between the two is
clearly visible. The jumps are indicated in the "gure with dashed lines. A signi"cant
softening behaviour was found. When the vibration amplitude is equal to the shell
thickness, the peak of the response appears for a frequency lower by about 2% than that at
very low vibration amplitudes.

The accelerations have been converted to displacements, dividing by the squared
excitation circular frequency, and have been plotted in Figure 9 together with the
theoretical responses without companion mode participation (practically coincident with
A

1,n
(t) in this case), since the companion mode was not observed in the experiments.

Theoretical values have been multiplied by 0)94 in order to compare them to the
experimental data. The theoretical curves have been computed by using the 6 d.o.f. model,
including modes with 2n circumferential waves. The damping used to produce the
theoretical curves is f

1,n
"0)011, i.e. a damping ratio of 1)1%, which is in good agreement

with the experimental values obtained by Amabili [11] for vibrations of a water-"lled



Figure 9. Frequency}response relationship at x"0)39¸ for the water-"lled test shell. s, experimental data,
force level 1)2 N; d, experimental data, force level 1)6 N; **, stable theoretical solutions; !!!, unstable
theoretical solutions.
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circular cylindrical shell made of steel with thin end-plates. The relation F"f
1,n

(n¸R/2) [2]
can be used to transform the modal excitation, used in the theoretical computations,
to a point excitation F (N), to compare to experiments. It must be observed that the
experimental forces are smaller than the theoretical ones, because there are additional loads
(sensors) on the shell at the force input.

The agreement between the theoretical curves and the experimental results is very good;
in particular, it is excellent for the lowest curve. The experimental points in the right-hand
part of Figure 9, for both forcing amplitudes, lie to the left of the theoretical curves. This is
explained by the presence of another mode, n"5 and m"1, which is very close in
frequency to the fundamental mode investigated in the shell tested, as shown in Table 1.
Between the two modes an antiresonance has been experimentally detected; this is close
enough to the peak of the response of the fundamental mode to modify the experimental
response (with at least a linear e!ect) in the right-hand part of Figure 9. In fact, it is
important to clarify, that the theoretical response does not take into account the interaction
between the fundamental mode, n"6 and m"1, and the additional mode, n"5 and
m"1. Overall, Figure 9 bespeaks of the good accuracy of the model developed in the
present series of papers.

Companion mode participation has not been found in the experiments. It has been found
experimentally that what should have been the companion mode has in fact a natural
frequency about 3% lower than the driven mode (see Table 1), as a consequence of the
test-shell being imperfectly axisymmetric due to manufacturing imperfections, the presence
of the seam and the sensors attached to the shell. This di!erence between the natural
frequency of the driven and companion mode is the reason for the absence of the
companion mode in the experimental response.



Figure 10. Theoretical frequency}response curve for the test-shell: **, water-"lled shell, excitation
f
1,n

"0)0354hu2
1,n

m
1
[2/(n¸)], damping f"0)011; !!!, empty shell, excitation f

1,n
"0.003hu2

1,n
m

1
[2/(n¸)],

damping f"0.001.
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Figure 10 presents the theoretical curve shown in Figure 9 for the lowest force level,
together with the theoretical response for the same shell, without water, and with a reduced
modal damping coe$cient f

1,n
"0)001, compatible with structural damping of the

test-shell. This "gure shows that water contained in the shell generates a much stronger
softening behaviour of the system.

6. CONCLUSIONS

Results show that additional asymmetric modes in the mode expansion used in the
analysis of forced vibrations of the shell have but a small e!ect on the trend of non-linearity
when compared to the "rst and third axisymmetric modes. The e!ect of additional
longitudinal modes is absolutely insigni"cant, in both the driven and companion mode
responses. The e!ect of modes with 2n circumferential waves is limited on the trend of
non-linearity but is qualitatively signi"cant in the response with companion mode
participation, at least for shells with very small damping. In particular, the travelling wave
response appears at much lower vibration amplitudes and there is a central area in the
frequency}response plane without stable periodic responses, corresponding to a beating
phenomenon.

The present results allow us to state that the mode expansions used in references [1, 2] are
capable of capturing the shell dynamics with the same accuracy as higher dimensional
models, with the exception of an extremely small range of excitation frequency, where the
inclusion of modes with 2n circumferential waves is essential, at least for shells with very
small damping.

A liquid (water) contained in the shell generates a much stronger softening behaviour of
the system.
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Experiments on a water-"lled steel specimen show very good agreement with the
theoretical results for the fundamental mode (n"6, m"1) investigated. Vibration
amplitudes larger than the shell thickness have been measured and satisfactorily compared,
showing a good accuracy of the model developed in the present series of papers.
Experimental results show a softening-type non-linearity of about 2% for a vibration
amplitude equal to the shell thickness.
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APPENDIX A: TIME FUNCTIONS USED IN EQUATION (8)

The functions c
i
(t), i"1,2 ,25, used in equation (8) are given by
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APPENDIX B: TIME FUNCTIONS USED IN EQUATION (13)

The functions c
i
(t), i"1,2 ,23, used in equation (13) are given by
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